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Abstract—Sign Language Recognition (SLR) has become an 

appealing topic in modern societies because such technology 

can ideally be used to bridge the gap between deaf and hearing 

people. Although important steps have been made towards the 

development of real-world SLR systems, signer-independent 

SLR is still one of the bottleneck problems of this research field. 

In this regard, we propose a deep neural network along with an 

adversarial training objective, specifically designed to address 

the signer-independent problem. Specifically, the proposed 

model consists of an encoder, mapping from input images to 

latent representations, and two classifiers operating on these 

underlying representations: (i) the sign-classifier, for 

predicting the class/sign labels, and (ii) the signer-classifier, for 

predicting their signer identities. During the learning stage, the 

encoder is simultaneously trained to help the sign-classifier as 

much as possible while trying to fool the signer-classifier. This 

adversarial training procedure allows learning signer-invariant 

latent representations that are in fact highly discriminative for 

sign recognition. Experimental results demonstrate the 

effectiveness of the proposed model and its capability of 

dealing with the large inter-signer variations. 

 
Index Terms—Sign language recognition, gesture 

recognition, adversarial neural networks, deep learning. 

  

I. INTRODUCTION 

Sign languages are the naturally occurring linguistic 

systems that arise within a Deaf community and, currently, 

considered the standard education method of deaf people 

worldwide. Sign language communication is expressed by 

means of articulated hand gestures (i.e., manual signs) along 

with facial expressions to convey meaning. Contrary to the 

popular belief, sign language is not universal and, just like 

spoken languages, it has its own lexicon, syntax and 

grammar. This is why most of hearing people are unfamiliar 

with sign language, which obviously creates a serious 

communication barrier between deaf communities and the 

hearing majority. 

As a key technology to help bridging the gap between 

deaf and hearing people, Sign Language Recognition (SLR) 
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has become one of the most active research topics in the 

human-computer interaction field. Its main purpose is to 

automatically translate the signs, from video or images, into 

the corresponding text or speech. Although recent SLR 

methods have demonstrated remarkable performances in 

signer-dependent scenarios, i.e. when training and test data 

come from the same signers, their recognition rates typically 

decrease significantly when the signer is new to the system. 

This performance drop is the result of the large inter-signer 

variability in the manual signing process of sign languages 

(see Fig. 1). However, a practical SLR system must operate 

in a signer-independent scenario, which means that the 

signer of the probe must not be seen during the training 

routine of the models. Therefore, signer-independent SLR 

has become one of the bottleneck problems for the 

development of a real-world and practical SLR system. 

 

 
Fig. 1. Inter-signer variability: it is possible to observe not only 

phonological variations (i.e., different handshapes, palm orientations, and 

sign locations) but also a large physical variability (i.e., different hand sizes) 

when six signers are performing the same sign. 

 

Borrowing from recent works on adversarial neural 

networks [1], [2] and domain transfer [3], we introduce a 

deep neural network along with a novel adversarial training 

objective to specifically tackle the signer-independent SLR 

problem. The underlying idea is to preserve as much 

information as possible about the signs, while discarding the 

signer-specific information that is implicitly present in the 

manual signing process. For this purpose, the proposed deep 

model is composed by an encoder network, which maps 

from the input images to latent representations, as well as 

two discriminative classifiers operating on top of these 

underlying representations, namely the sign-classifier 

network and the signer-classifier network. While the sign-

classifier is trained to predict the sign labels, the signer-

classifier is trained to discriminate their signer identities. In 

addition, the parameters of the encoder network are 

optimized to minimize the loss of the sign-classifier while 

trying to fool the signer-classifier network. This adversarial 
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and competitive training scheme encourages the learned 

representations to be signer-invariant and highly 

discriminative for the sign classification task. To further 

constrain the latent representations to be signer-invariant, 

we introduce an additional training objective that operates 

on the hidden representations of the encoder network in 

order to enforce the latent distributions of different signers 

to be as similar as possible. 

Although this adversarial training framework is similar to 

those initially introduced by Ganin et al [3], in the context 

of domain adaptation, and then by Feutry et al [2] to learn 

anonymized representations, our main contributions on top 

of these works are two-fold: 

1) The application of the adversarial training concept to 

the signer-independent SLR problem; 

2) A novel adversarial training objective that differs from 

the ones of Ganin et al [3] and Feutry et al [2] in two 

ways. First, our training objective is minimum if and 

only if the adversarial classifier, which in our case 

corresponds to the signer-classifier, produces a uniform 

distribution over the signer identities, meaning that our 

model is completely invariant to the signer identity of 

the training data. Second, we introduce an additional 

term to the adversarial training objective that further 

discourages the learned representations of retaining any 

signer-specific information, by explicitly imposing 

similarity in the latent distributions of different signers. 

This paper is an extension of our conference paper [4]. 

The new contributions of this paper are summarized as 

follows: 

1) The introduction of a transfer learning strategy in the 

proposed adversarial training objective, yielding an 

overall improvement in the sign recognition 

performance. Concretely speaking, instead of training 

all the network components from scratch, the encoder 

network is initialized with the first 10 layers of VGG-19 

[5], pre-trained on the ImageNet [6], and then finetuned 

to our specific task. 

2) An extended experimental section to further 

demonstrate the effectiveness of the proposed model. 

Specifically, the experimental evaluation of the 

proposed model is extended to an additional SLR 

database. Moreover, we introduce a quantitative 

analysis of the produced latent representations and an 

analysis of the training behavior of the proposed model. 

The remainder of the paper is organized as follows. 

Section II presents the related work. The proposed model 

along with its adversarial training scheme are fully 

described in Section III. Experimental results and 

conclusions are reported in Sections IV and V, respectively. 

 

II. RELATED WORK 

According to the amount of data required from the test 

signers, previous signer-independent SLR works can be 

roughly classified into two main groups, namely (i) signer 

adaptation approaches, where a previously trained model is 

adapted to a new test signer by using a small amount of 

signer specific data, and (ii) truly signer-independent 

methods, in which a generic model robust for new test 

signers is built without using data of those test signers. 

Greatly inspired by speaker adaptation methods from the 

speech recognition research, Von Agris et al [7] proposed 

the combination of the eigenvoice (EV) approach [8] with 

maximum likelihood linear regression (MLLR) and 

maximum a posteriori (MAP) estimation to adapt trained 

Hidden Markov Models (HMMs) to new signers. More 

recently, Kim et al [9] investigated the potential of different 

deep neural network adaptation strategies for the signer-

independence problem. Yin et al [10] proposed an 

interesting weakly-supervised signer adaptation approach, in 

which the adaptation data from the new signer has not to be 

labeled. Specifically, a generic metric is first learnt from the 

available labeled data of several different signers and, then, 

adapted to the new signer by considering clustering and 

manifold constraints along with the collected unlabeled data. 

Although signer adaptation is a reasonable approach, in 

practice, collecting enough training data from each new 

signer to retrain and adapt the model may not be feasible. In 

this regard, several works focused on the development of 

truly-signer independent models that do not require any data 

from the new signers [11]-[17]. Most of them involved a 

huge feature engineering effort in order to build normalized 

hand-crafted feature descriptors robust to the large inter-

signer variations. A major weakness across all the 

aforementioned methods is related to the fact that 

representation and metric learning is not jointly performed. 

Motivated by the inherent difficulty of designing reliable 

handcrafted features to the large inter-signer variability, 

recent SLR systems are mostly based on deep neural 

networks [18]-[22]. It is well-known that deep neural 

networks are remarkably good in figuring out reliable high-

level feature representations from the data. However, in 

previous deep SLR methodologies, the learned 

representations are not explicitly constrained to be signer-

invariant. Therefore, there is nothing to prevent the learned 

representations of different signers and the same class of 

being far apart in the representation space and, hence, signer 

invariance is not ensured. 

This paper presents a novel adversarial training objective, 

based on representation learning and deep neural networks, 

specifically designed to address the signer-independent SLR 

problem. Different from the aforementioned methodologies, 

our model jointly learns the representation and the classifier 

from the data, while explicitly imposing signer invariance in 

the high-level representations for a robust and truly signer-

invariant sign recognition. 

 

III. PROPOSED METHOD 

The ultimate goal of our model is to learn signer-invariant 

latent representations that preserve the relevant part of the 

information about the signs while discarding the signer-

specific traits that may hamper the sign classification task. 

To accomplish this purpose, we introduce a deep neural 

network along with an adversarial training scheme that is 

able to learn feature representations that combine both sign 

discriminativeness and signer-invariance. 

More specifically, let 𝕏 = {𝑋𝑖 , 𝑦𝑖 , 𝑠𝑖}𝑖=1
𝑁  denote a labeled 

dataset of 𝑁  samples, where 𝑋𝑖  represents the 𝑖 -th colour 

image, and 𝑦𝑖  and 𝑠𝑖  denote the corresponding class (sign) 

label and signer identity, respectively. To induce the model 
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to learn signer-invariant representations, the proposed model 

comprises three distinct sub-networks: 

1) An encoder network, which aims at learning an 

encoding function ℎ(X;  𝜃ℎ), parameterized by 𝜃ℎ, that 

maps from an input image X to a latent representation ℎ; 

2) A sign-classifier network, which operates on top of this 

underlying latent representation ℎ  to learn our task-

specific function 𝑓(ℎ; 𝜃𝑓), parameterized by𝜃𝑓 , that 

maps from h to the predicted probabilities 𝑝(y|ℎ; 𝜃𝑓) 

of each sign class. 

3) A signer-classifier network, with the purpose of 

learning a signer-specific function 𝑔(ℎ; 𝜃𝑔) , 

parameterized by 𝜃𝑔 , that maps the same hidden 

representation ℎ  to the predicted probabilities 

𝑝(s|ℎ; 𝜃𝑔) of each signer identity. 

During the learning stage, the parameters of both 

classifiers are optimized in order to minimize their errors on 

their specific tasks on the training set. In addition, the 

parameters of the encoder network are optimized in order to 

minimize the loss of the sign-classifier network while 

forcing the signer-classifier to be a random guessing 

predictor. In the course of this adversarial training procedure, 

the learned latent representations ℎ  are encouraged to be 

signer-invariant and highly discriminative for sign 

classification. To further discourage the latent 

representations of retaining any signer-specific traits, we 

introduce an additional training objective that enforces the 

latent distributions of different signers to be as similar as 

possible. The result is a truly signer-independent model 

robust to new test signers. 

A. Architecture 

As illustrated in Fig. 2, the architecture of the proposed 

model is composed by three main sub-networks or blocks, 

i.e. an encoder, a sign-classifier and a signer-classifier. 

The encoder network attempts to learn a mapping from an 

input image X to a latent representation h. It simply consists 

of a sequence of Le pairs of consecutive 3 × 3 convolutional 

layers with Rectified Linear Units (ReLUs) as non-

linearities. For downsampling, the last convolutional layer 

of each pair has a stride of 2. On top of that, there is a fully-

connected layer, also with a ReLU, representing the desired 

signer-invariant latent representations h. 

Taking the latent representations h as input, the sign-

classifier block is composed by a sequence of Ls fully-

connected layers, with ReLUs as the non-linear functions, 

for predicting the sign class 𝑦̂ = arg max 𝑓(ℎ;  𝜃𝑓) . 

Therefore, the last fully-connected layer has a softmax 

activation function which outputs the probabilities for each 

sign class. 

The signer-classifier network has exactly the same 

topology as the sign-classifier net. However, it maps the 

latent representations h to the predicted signer identity 𝑠̂ =

arg max 𝑔(ℎ; 𝜃𝑔). Therefore, the number of nodes of the 

output layer is defined according to the number of signers in 

the training set. 

B. Adversarial Training 

By definition, signer-invariant representations discard all 

signer-specific information and, as such, no function (i.e., 

classifier) exists that maps such representations into the 

correct signer identity. This naturally leads to an adversarial 

problem, in which: (i) a signer-classifier network 𝑔(⋅; 𝜃𝑔) 

receives latent representations ℎ = ℎ(𝑋; 𝜃ℎ)  from an 

encoder network ℎ(⋅; 𝜃ℎ)  and tries to predict the signer 

identity s  corresponding to image X  and (ii) the encoder 

network tries to fool the signer-classifier network while still 

providing good representations for the sign-classifier 

network 𝑓(⋅; 𝜃𝑓) , which in turn receives the same 

representations ℎ and aims to predict the sign label y 

corresponding to image X. 

Therefore, the signer-classifier network shall be trained to 

minimize the negative log-likelihood of correct signer 

predictions: 

 

min
𝜃𝑔

ℒsigner(𝜃ℎ, 𝜃𝑔) =  −
1

𝑁
∑ log 𝑝(𝑠𝑖|ℎ(𝑋𝑖; 𝜃ℎ); 𝜃𝑔)𝑁

𝑖=1  (1) 

 

In the perspective of the encoder, the predictions of the 

sign-classifier should be as accurate as possible and the 

predictions of the signer-classifier should be kept close to 

uniform, meaning that this latter classifier is not capable of 

doing better than random guessing the signer identity. 

Formally, this may be translated into the following 

constrained objective: 

 

min
𝜃ℎ,𝜃𝑓

ℒsign(𝜃ℎ , 𝜃𝑓) =  −
1

𝑁
∑ log 𝑝(𝑦𝑖|ℎ(𝑋; 𝜃ℎ); 𝜃𝑓)𝑁

𝑖=1     (2) 

subject to
1

𝑁
∑ 𝐷KL(𝒰𝕊(s) ||𝑁

𝑖=1  𝑝(s|ℎ(𝑋𝑖;  𝜃ℎ); 𝜃𝑔) ≤ 𝜖,   (3) 

 

where DKL  is the Kullback-Leibler (KL) divergence and 

𝒰𝕊(s) denotes the discrete uniform distribution on the 

random variable s, defined over the set of identities S in the 

training set. Here, 𝜖 ≥ 0 determines how far from uniform 

the signer-classifier predictions are allowed to be (as 

measured by the KL divergence). The choice of the uniform 

distribution implies the underlying assumption that the 

training set is balanced relatively to the number of examples 

per signer (which should be true for most practical datasets). 

When this is not the case, the empirical distribution of signer 

identities in the training set may be used instead. 

The constraint inequality (3) may be rewritten as: 
 

ℒadv(𝜃ℎ , 𝜃𝑔) =
1

𝑁|𝕊|
∑ ∑ log 𝑝(s|ℎ(𝑋𝑖; 𝜃𝑔); 𝜃𝑔) ≤ 𝜖 +s∈𝕊

𝑁
𝑖=1

+ log |𝕊|  (4)  
 

and the constrained optimization problem may be 

equivalently formulated as: 

min
𝜃ℎ,𝜃𝑓

ℒ(𝜃ℎ, 𝜃𝑓 , 𝜃𝑔) = ℒsign(𝜃ℎ, 𝜃𝑓) + 𝜆ℒadv(𝜃ℎ, 𝜃𝑔),     (5) 

where 𝜆 ≥ 0 depends on 𝜖  and ℒ𝑎𝑑𝑣 plays the role of an 

adversarial loss with respect to the signer classification loss 

𝐿𝑠𝑖𝑔𝑛𝑒𝑟 . 

This objective and the structure of our model are similar 

to those used in [3], in the context of domain adaptation, and 

in [2], to learn anonymized representations for privacy 

purposes. However, the former uses the negative signer 

classification loss as the adversarial term (i.e., ℒ𝑎𝑑𝑣 ←
−ℒ𝑠𝑖𝑔𝑛𝑒𝑟 ), which is not lower bounded, leading to high 

gradients and difficult optimization. The latter addresses this 
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problem by replacing this term with the absolute difference 

between the adversarial loss as defined in equation (4) and 

the signer classification loss (i.e., ℒ𝑎𝑑𝑣 ← |ℒ𝑎𝑑𝑣 − ℒ𝑠𝑖𝑔𝑛𝑒𝑟|. 

This option has a nice information theoretic interpretation as 

being an empirical upper bound for the mutual information 

between the distribution of signer identities and the 

distribution of latent representations. Nonetheless, this loss 

vanishes for infinitely many (non-uniform) distributions. 

Our choice, besides being clearly lower bounded by the 

entropy of the uniform distribution, log |𝕊|, is minimum if 

and only if 𝑝(𝑠|ℎ(𝑋𝑖; 𝜃ℎ); 𝜃𝑔) ≡  𝒰𝕊(𝑠), ∀𝑖,  meaning that 

the signer-classifier block is completely agnostic relatively 

to the signer identities of the training samples. 

 

 
Fig. 2. Architecture of the proposed signer-invariant neural network. It comprises three main sub-networks or blocks: an encoder, a sign-classifier and a 

signer-classifier. 

 

C. Signer-Transfer Training Objective 

To further encourage the latent representations h to be 

signer-invariant, we introduce an additional term in 

objective   (5), the so-called signer-transfer loss ℒtransfer . 

The core idea of ℒtransfer  is to enforce the latent 

distributions of different signers to be as similar as possible. 

In practice, this is achieved by minimizing the difference 

between the hidden representations  

of different signers, at each layer of the encoder network. To 

measure the signers’ distribution difference at the 𝑚-th layer, 

𝑚 ∈ {1, 2, … , 𝑀}, we compute a distance 𝐷(𝑚) between the 

hidden representations ℎ(𝑚)(⋅;  𝜃ℎ) of two signers 𝑠 and 𝑡 at 

the output of that layer, as: 

𝒟(𝑚)(𝑠, 𝑡; 𝜃ℎ) = ‖
1

𝑁𝑠
∑ ℎ(𝑚)

𝑖:𝑠𝑖=𝑠 (𝑋𝑖;  𝜃ℎ) −

1

𝑁𝑡
∑ ℎ(𝑚)(𝑋𝑗 ; 𝜃ℎ) 𝑗:𝑠𝑗=𝑡 ‖

2

2

,                           
(6)

 

where ‖ ⋅ ‖2  is the ℓ -2 norm, and 𝑁𝑠  and 𝑁𝑡  denote the 

number of training examples of signers 𝑠 and 𝑡, respectively. 

Accordingly, the signer-transfer loss at the 𝑚-th layer is the 

sum of the pairwise distances between all signers, i.e.: 
 

ℒtransfer
(𝑚) (𝜃ℎ) =  ∑ ∑ 𝒟(𝑚)(𝑠, 𝑡;  𝜃ℎ).𝑡∈𝕊∧𝑡≠𝑠 𝑠∈𝕊         (7) 

 

The overall signer-transfer loss ℒtransfer  is then a 

weighted sum of the losses computed at each layer of the 

encoder network, such that: 
 

ℒtransfer(𝜃ℎ) =  ∑ 𝛽(𝑚)ℒ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
(𝑚) (𝜃ℎ),𝑀

𝑚=1        (8) 
 

where 𝛽(𝑚) is a hyperparameter that controls the relative 

importance of the loss obtained at the 𝑚 -th layer. By 

combining (5) and (8), the encoder and sign-classifier 

networks are trained to minimize the following loss function: 

min
𝜃ℎ,𝜃𝑓

ℒ(𝜃ℎ, 𝜃𝑓 , 𝜃𝑔) =  ℒsign(𝜃ℎ , 𝜃𝑓) + 𝜆ℒadv(𝜃ℎ , 𝜃𝑔),     (9) 

where 𝛾 ≥ 0  is the weight that controls the relative 

importance of the signer-transfer term. 

Summing up, the adversarial training procedure is 

organized by alternatively either training both the encoder 

and the sign-classifier in order to minimize objective (9) or 

training the signer-classifier in order to minimize objective 

(1). 

 

IV. EXPERIMENTAL EVALUATION 

The experimental evaluation of the proposed model was 

performed using three publicly available SLR databases: the 

Jochen-Triesch database [23], the Microsoft Kinect and 

Leap Motion American sign language (MKLM) database 

[24], [25], and the Portuguese Sign Language and 

Expressiveness Recognition (SI-PSL) database [26]. Jochen-

Triesch [23] is a dataset of 10 hand signs performed by 24 

signers against three different types of backgrounds: 

uniform light, uniform dark and complex. Experiments on 

Jochen-Triesch were conducted using the standard 

evaluation protocol of this dataset [27], in which 8 signers 

are used for the training and the remaining 16 signers are 

used for the test. MKLM [24], [25] contains a total of 10 

signs, each one repeated 10 times by 14 different signers. In 

this dataset, the performance of the models is assessed using 

5 random splits, created with signer-independence, yielding 

at each split a training set of 10 signers, a validation set of 2 

signers and a test set of 2 signers. The SI-PSL database 

contains 31 isolated signs, representing the alphabet and the 

cardinal numbers 0 to 9 of the Portuguese sign language. All 
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the signs were performed three times by 11 native signers, in 

a free and natural signing environment, without any clothing 

restriction but with a slightly controlled uniform background. 

SI-PSL has a well-defined standard evaluation protocol, 

which consists of 6 signers for training, 1 signer for 

validation and the remaining 4 signers are used for testing. 

A. Implementation Details 

In order to extract the manual signs from the noisy 

background of the images, the automatic hand detection 

algorithm [28] is used as a pre-processing step. The images 

are then cropped, resized to the average sign size of the 

training set, and normalized to be in the range [−1, 1]. 

Throughout this section, the proposed model is compared 

with state-of-the-art methods for each dataset [15], [16], 

[24], [27], [28]. Nevertheless, to further attest the robustness 

of the proposed model, two different baselines are also 

implemented: 

1) (Baseline 1) A CNN trained from scratch with ℓ -2 

regularization. For a fair comparison, the architecture 

of the baseline CNN corresponds to the architecture of 

the encoder network followed by the sign-classifier 

network of the proposed model. 

2) (Baseline 2) A CNN with the baseline 1 topology, but 

trained with the triplet loss [29]. 
 

TABLE I: HYPERPARAMETERS SETS 

Hyperparameters Acronym Set 
Leaning rate - {1e−04,1e−03} 

ℓ-2 norm coefficient - {1e−05,1e−04} 
ℒtriplet  weight ρ {0.1,0.5,1,5,10} 

ℒadv  weight λ {0.1,0.5,0.8,1,3} 
ℒtransferweight γ {1.5e−04,2e−04,4e−04,1e−03} 

 

Here, the triplet loss concept is explored in order to 

impose signer-independence in the representation space and, 

hence, build up a more robust baseline. The underlying idea 

is to minimize the distance between an anchor and a positive 

latent representation, ℎ𝑦𝑖,𝑠𝑖
 and ℎ𝑦𝑝 ,𝑠𝑝

, respectively; while 

maximizing the distance between the anchor ℎ𝑦𝑖,𝑠𝑖
and a 

negative representation ℎ𝑦𝑛,𝑠𝑛
. It is important to note that 

while anchor and positive latent representations have to be 

from the same sign class, their signer identity may or not 

change. On the other hand, anchor and negative 

representations are from different sign classes, whereas their 

signer identity may also change. In order to train baseline 2 

in an end-to-end fashion for sign classification, the overall 

loss function to be minimized is a trade-off between the 

triplet loss ℒtriplet and a classification loss ℒsign, such that: 

 

ℒ = ℒsign +
𝜌

𝑁
∑ ‖ℎ𝑦𝑖 ,𝑠𝑖

− ℎ𝑦𝑝,𝑠𝑝
‖

2

2
− ‖ℎ𝑦𝑖 ,𝑠𝑖

− ℎ𝑦𝑛,𝑠𝑛
‖

2

2𝑁
𝑖=1 ,   (10) 

 

where ℒsigncorresponds to the categorical cross-entropy as 

defined in equation (2). The second term denotes the Ltriplet, 

where 𝑦𝑝 = 𝑦𝑖and𝑦𝑛 ≠ 𝑦𝑖 , and ρ ≥ 0 is a hyperparameter 

controlling its relative importance. The margin enforced 

between positive and negative pairs was fixed as 𝛼 = 1. In 

addition, following [29], an online triplet generation strategy, 

by selecting the hardest positive/negative samples within 

every mini-batch, was adopted. 

All deep models were implemented in PyTorch and 

trained with the Adam optimization algorithm using a batch 

size of 32 samples. For reproducibility purposes, the source 

code as well as the weights of the trained models are 

publicly available online 1 . The hyperparameters that are 

common to all the implemented models (i.e., learning rate 

and ℓ -2 regularization weight) as well as some 

hyperparameters that are specific to the proposed model (i.e., 

𝜆 and 𝛾) and to the implemented baseline 2 (i.e., 𝜌) were 

optimized by means of a grid search approach and cross-

validation on the training set (see Table I for more details). 

The signer-transfer penalty ℒtransfer  is applied to the last 

two layers of the encoder network with a relative weight of 

1. Regarding the model’s architecture, the number of 

consecutive convolutional layers pairs 𝐿𝑒  was set to 3, 

which results in a total of 6 convolutional layers. The 

number of filters starts as 32, which is then doubled after 

each convolutional pair. The dense layer on top of the 

encoder network has 128 neurons. The number of dense 

layers of both classifiers Ls was set to 3, and the number of 

nodes of each hidden layer was set as 128. 

 
TABLE II: JOCHEN-TRIESCH EXPERIMENTAL RESULTS. RESULTS ARE 

REPORTED IN TERMS OF AVERAGE CLASSIFICATION ACCURACY. THE FIRST 

BLOCK OF THE TABLE PRESENTS THE RESULTS OF STATE-OF-THE-ART 

METHODS. THE SECOND BLOCK DEPICTS THE RESULTS OF THE PROPOSED 

MODEL AND OF BOTH IMPLEMENTED BASELINES 

Method 
Classification accuracy (%) 

Background 
Uniform Complex Both 

Just et al [27] 92.79 81.25 87.92 
Kelly et al. [15] 91.80 - - 

Dahmani et al [16] 93.10 - - 
CNN (Baseline 1) 97.50 74.38 89.79 

CNN with Triplet loss (Baseline 2) 98.13 75.63 90.63 
Proposed method 98.75 91.25 96.25 

CNN (Baseline 1) with T.L. 100.00 98.75 99.58 
CNN with Triplet loss (Baseline 2) with T.L. 99.69 97.50 98.96 

Proposed method with T.L. 100.00 99.38 99.79 

 
TABLE III: MKLM EXPERIMENTAL RESULTS. THE RESULTS ARE 

REPORTED IN TERMS OF AVERAGE CLASSIFICATION ACCURACY. THE FIRST 

BLOCK OF THE TABLE PRESENTS THE RESULTS OF STATE-OF-THE-ART 

METHODS. THE SECOND BLOCK DEPICTS THE RESULTS OF THE PROPOSED 

MODEL AND OF BOTH IMPLENTED MODELS WITH TRANSFER LEARNING 

Method Classification accuracy (%) 
average (std) min max 

Marin et al [24] 89.71 ( - ) - - 
Ferreira et al [28] 93.17 ( - ) - - 
CNN (Baseline 1) 89.90 (8.81) 73.00 98.00 

CNN with Triplet loss (Baseline 2) 91.40 (3.93) 86.50 96.50 
Proposed method 94.80 (3.53) 89.50 100.00 

CNN (Baseline 1) with T.L. 97.30 (1.91) 94.50 100.00 
CNN with Triplet loss (Baseline 2) with T.L. 98.50 (1.48) 96.00 100.00 

Proposed method with T.L. 99.30 (0.60) 98.50 100.00 

 

B. Results and Discussion 

Experiments on Jochen-Triesch, MKLM, and SI-PSL 

databases are summarized in Tables II, III, and IV 

respectively. The results on the Jochen-Triesch database are 

presented in terms of average classification accuracy in the 

overall test set as well as against each specific background 

type (i.e., uniform and complex). For the MKLM database, 

Table III depicts the average classification accuracy 

computed across all the 5 test splits, as well as the minimum 

and maximum accuracy value achieved by each method. As 

 

1 https://github.com/pmmf/SI-SLR
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the SI-PSL database is clearly the most challenging one and 

contains a large number of sign classes (i.e., 31), the results 

are presented in terms of top-1, top-3 and top-5 

classification accuracy (see Table IV). 

  
TABLE IV: SI-PSL EXPERIMENTAL RESULTS. THE RESULTS ARE 

REPORTED IN TERMS OF TOP-1, TOP-3 AND TOP-5 CLASSIFICATION 

ACCURACY. THE FIRST BLOCK DEPICTS THE RESULTS OF THE 

PROPOSED MODEL AND OF BOTH IMPLEMENTED BASELINES. THE SECOND 

BLOCK PRESENTS THE RESULTS OF THE IMPLEMENTED MODELS WITH 

TRANSFER LEARNING 

Method Classification accuracy (%) 
Top-1 Top-3 Top-5 

CNN (Baseline 1) 45.97 74.73 85.75 
CNN with Triplet loss (Baseline 2) 42.74 72.31 81.99 

Proposed method 49.13 76.01 85.19 
CNN (Baseline 1) with T.L. 67.74 91.13 94.89 

CNN with Triplet loss (Baseline 2) with T.L. 75.81 92.20 95.43 
Proposed method with T.L. 76.08 94.89 98.12 

 

The most interesting observation is the superior 

performance of the proposed model. Specifically, the 

proposed model provides the best overall classification 

accuracy across all the SLR databases, clearly 

outperforming both implemented baselines and all the 

previous state-of-the-art models. In complex scenarios, as 

reported in Table II, the proposed model surpasses all the 

other methods by a large margin (i.e., 91.25% against 

81.25%, 74.38% and 75.63%). In addition, by analyzing the 

standard deviation as well as the minimum and maximum 

accuracy values, it possible to observe that the proposed 

model is the method with the lowest variability, yielding 

consistently high accuracy rates across all test splits of the 

MKLM dataset (see Table III). These results attest the 

robustness of the proposed model and its capability of better 

dealing with the large inter-signer variability that exists in 

the manual signing process of sign languages. Interestingly, 

the obtained results also reveal that the implemented 

baselines are in fact fairly strong models, both of them 

outperforming most of the state-of-the-art methods on both 

datasets. Finally, it is worth mentioning the superiority of 

the proposed model in the most challenging database (i.e., 

the SI-PSL). As shown in Table IV, the proposed model 

outperformed both the implemented baselines in all the three 

classification metrics. 

C. Transfer Learning 

To further improve the performance of the proposed 

model, we introduce a transfer learning strategy in the 

proposed adversarial training objective. Transfer learning 

aims to extract knowledge from one or multiple source tasks 

(or domains) and, then, use this prior knowledge when 

learning a model for a new target task [30]. Transfer 

learning techniques are particularly useful when we have to 

deal with limited sized training sets, as it happens in most 

available SLR databases. In this work, we applied a 

conventional transfer learning strategy that can be 

summarized as follows: 

• The encoder network is initialized with the first 10 

layers of VGG-19 [5], pre-trained on the ImageNet [6] 

database; 

• During the first training epochs (≈ 30), the optimization 

algorithm is defined so that only the parameters of both 

classifiers are updated; 

• In the remaining training epochs, the encoder network 

is fine-tuned for our particular task, which means that 

all the model parameters are updated. 

It is important to note that for a fair comparison, we have 

also employed the same transfer learning strategy to both 

implemented baselines. The performance of the models with 

transfer learning is reported in the bottom blocks of Tables 

II, III, and IV. As it is possible to observe, transfer learning 

has brought substantial gains for all the models. Besides, the 

most important observation is that the proposed model 

remains the best method by a large margin. 

D. Ablation Study 

Table V depicts an ablation study of the proposed model, 

in which it is possible to assess the effect of each proposed 

training scheme. For this purpose, the proposed model was 

trained either (i) with just the adversarial procedure, without 

the signer-transfer ℒtransferloss, or (ii) with just the ℒtransfer 

penalty on the encoder network, without adversarial training. 

The results clearly demonstrate the complementary effect 

between the two training procedures, as their combination 

provides the best overall classification accuracy. 

Interestingly, each training scheme outperforms on its own 

both baselines and state-of-the-art methods. 
 

TABLE V: THE EFFECT OF EACH TRAINING PROCEDURE IN THE PROPOSED 

MODEL. THE RESULTS IN THE LAST COLUMN ARE REPLICATED FROM 

TABLES II, III AND IV AS THEY INCLUDE BOTH TRAINING PROCEDURES 

Dataset Classification accuracy (%)  

Only adversarial training Only ℒtransfer penalty Both 
Jochen-Triesch 95.21 94.38 96.25 

MKLM 94.00 94.10 94.80 
SI-PSL 48.56 39.25 49.13 

E. Latent Space Visualization 

To further demonstrate the effectiveness of the proposed 

model in promoting signer-invariant latent representation 

spaces, we have performed a visual inspection of the latent 

representations through the t-distributed stochastic neighbor 

embedding (t-SNE) [31] (see Fig. 3). These plots clearly 

demonstrate the better capability of the proposed model of 

imposing signer-independence in the latent representations. 

The proposed model yields a latent representation space in 

which representations of different signers and same class are 

close to each other and well mixed, while it keeps latent 

representations of different classes far apart. By analyzing 

the t-SNE plot of baseline 1, it is possible to observe that the 

latent representations of different signers and the same class 

tend to be far apart in the latent space. In addition, there is 

some overlapping between clusters of different classes. 

Although baseline 2 (CNN with the triplet loss) promoted 

slightly improvements over the standard baseline CNN, the 

proposed model achieved by far the best signer-invariance 

and class separability. 

F.  Cluster Analysis in the Latent Space 

In order to obtain an objective quality assessment of the 

produced latent representations, we have evaluated how well 

the model is able to cluster the different sign classes (and 

thus ignore the signer identity) in the latent space. For this 

purpose, we use two cluster validation metrics: the average 

Silhouette coefficient [32] per cluster and the Dunn’s index 
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[33] per cluster. 

The Silhouette coefficient for an observation 𝑖  is 

computed as follows. Let 𝐶𝑖  be the cluster (sign class) 

associated with the observation 𝑖. The average intra-cluster 

distance 𝑎𝑖and the minimum average inter-cluster distance 

𝑏𝑖for the observation 𝑖 are obtained as follows: 

𝑎𝑖 =
1

|𝐶𝑖|−1
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝑖

,                              (11) 

𝑏𝑖 = min
𝐶̅≠𝐶𝑖

1

|𝐶̅|
∑ 𝑑(𝑖, 𝑗),𝑗∈𝐶̅                              (12) 

where |𝐶𝑖| denotes the number of observations in the cluster 

𝐶𝑖  and 𝑑(𝑖, 𝑗)  is the Euclidean distance between the 

observations 𝑖  and 𝑗 . Then, the Silhouette index 𝑆𝑖  for the 

observation 𝑖 is defined as: 

𝑆𝑖 =
𝑏𝑖−𝑎𝑖

max(𝑎𝑖,𝑏𝑖)
.                                   (13) 

Clearly, −1 ≤ 𝑆𝑖 ≤ 1. Intuitively, clusters are desirably 

compact (small 𝑎𝑖) and well separated (large 𝑏𝑖), so a larger 

value of 𝑆𝑖  indicates better clustering. However, this metric 

is defined per observation. Hence, in order to have a global 

measure of clustering quality, we compute the average 

Silhouette coefficient for each cluster. 

Dunn’s index follows a similar idea of measuring cluster 

compactness versus separation, but uses minimum and 

maximum distances instead of average distances, and is 

more sensitive to extreme and occasional errors. Specifically, 

Dunn’s index 𝐷𝐶  for a cluster 𝐶  is defined as the ratio 

between the minimum inter-cluster distance 𝛿𝐶  from 𝐶 to all 

other clusters (which measures cluster separation) and the 

maximum intra-cluster distance Δ𝐶  for the cluster 𝐶 (which 

measures cluster compactness): 

𝛿𝐶 = min
𝑖∈𝐶,𝑗∉𝐶

𝑑(𝑖, 𝑗),                               (14) 

Δ𝐶 = max
𝑖,𝑗∈𝐶

𝑑(𝑖, 𝑗),                                  (15) 

𝐷𝐶 =
𝛿𝐶

Δ𝐶
.                                      (16) 

Again, according to this metric, larger values indicate 

better clustering. As anticipated by the analysis of the two-

dimensional t-SNE projection in Fig. 3, the results confirm 

that the proposed model produces the most compact and 

separated sign clusters, when compared with the remaining 

models. This observation supports the signer-invariance 

property of the representations produced by the proposed 

adversarial training framework: when exposed to images 

obtained from new signers, our model does a better job of 

grouping them according to the respective sign class only, 

ignoring the signer identity. 

 

 

 

                             (a) CNN - baseline 1                                        (b) CNN with triplet loss - baseline 2                                    (c) Proposed model 

Fig. 3. Two-dimensional projection of the latent representation space using the t-distributed stochastic neighbor embedding (t-SNE) [31]. Markers • and + 

represent 2 different test signers, while the different colors denote the 10 sign classes. 

 

 

                                         (a)                                                                                    (b)                                                                                   (c) 

Fig. 4. Training behavior of the proposed model: (a) the evolution of both training and validation ℒsign  curves; (b) the evolution of both ℒadvand ℒsignerloss 

terms; and (c) the evolution of the ℒtransfer loss term. 

 

G. Training Behavior of the Proposed Model 

The evolution of the loss values along the training 

iterations is presented in Fig. 4. On Fig. 4a, one observes a 

small gap between training and validation sign classification 

losses, proving that the model is being regularized properly. 

This regularization effect is promoted by the adopted 

adversarial training and signer-transfer objectives, whose 

loss functions are depicted in Fig. 4b and Fig. 4c. 

The adversarial training dynamics in Fig. 4b are an 

immediate consequence of the min-max game played 

between the signer-classifier and the encoder networks. The 

former aims to minimize ℒsigner , while the latter tries to 

maximize it (by minimizing the surrogate ℒadv). Note that, 
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at the beginning of training, both losses are equal tolog |𝕊|, 
which is the entropy of the uniform distribution over signer 

identities and is the minimum possible value of ℒadv. This 

results from the fact that the untrained signer-classifier is 

just a random predictor. As training progresses, this network 

starts learning to predict correct signer identities from the 

provided latent representations. Therefore, ℒsigner starts 

decreasing and, consequently, ℒadvincreases. The min-max 

game eventually leads to a point where both losses become 

stable and fairly close to their initial value, log |𝕊| . This 

implies that, at the ending of training, the latent 

representations produced by the encoder network exhibit 

high signer-invariance, as desired. 

The signer-transfer objective exhibits a smooth evolution 

along the training epochs, as shown in Fig. 4c. The 

exception is the first few training iterations, where the 

corresponding loss ℒtransfer  increases rapidly, as the 

network weights depart from their initial values (which are 

close to zero). After this short period, the distribution of the 

latent representations of different signers start becomıng 

closer and the loss decreases almost monotonically, until it 

eventually plateaus at a low value. 

 
TABLE  VI: DUNN’S INDEX AND SILHOUETTE COEFFICIENT FOR THE SIGN CLASS CLUSTERS IN THE LATENT SPACE FOR THE TEST DATA. THESE METRICS 

WERE COMPUTED PER CLUSTER AND THE AVERAGE AND WORST RESULTS ARE REPORTED FOR EACH MODEL AND DATASET 

Method 
Jochen-Triesch MKLM SI-PSL 

Dunn’s index Silhouette Dunn’s index Silhouette Dunn’s index Silhouette 
Average Worst Average Worst Average Worst Average Worst Average Worst Average Worst 

CNN (Baseline 1) 0.297 0.184 0.669 0.618 0.718 0.185 0.673 0.386 0.329 0.197 0.362 0.223 
CNN with Triplet loss (Baseline 2) 0.481 0.277 0.689 0.581 0.965 0.326 0.733 0.531 0.414 0.276 0.411 0.304 

Proposed method 0.593 0.275 0.753 0.690 1.012 0.351 0.758 0.630 0.405 0.305 0.470 0.346 
 

V. CONCLUSION 

This paper presents a novel adversarial training objective, 

based on representation learning and deep neural networks, 

specifically designed to tackle the signer-independent SLR 

problem. The underlying idea is to learn signer-invariant 

latent representations that preserve as much information as 

possible about the signs, while discarding the signer-specific 

traits that are irrelevant for sign recognition. For this 

purpose, we introduce an adversarial training procedure for 

simultaneously training an encoder and a sign-classifier 

over the target sign variables, while preventing the latent 

representations of the encoder to be predictive of the signer 

identities. To further discourage the underlying 

representations of retaining any signer-specific information, 

we propose an additional training objective that enforces the 

latent distributions of different signers to be as similar as 

possible. Experimental results demonstrate the effectiveness 

of the proposed model in several SLR databases. 
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